Klefki (Japanese: クレッフィ Cleffy) is a dual-type Steel/Fairy Pokémon introduced in Generation VI. It is not known to evolve into or from any other Pokémon.
TL;DR¶
Klefki is a playground for researching elliptic curve group based cryptocoins, such as Bitcoin and Ethereum. All data types & structures are based on mathematical defination of abstract algebra.
AAT(Abstract Algebra Type)¶
With AAT(Abstract Algebra Type)
you can easily implement the bitcoin priv/pub key
and sign/verify
algorithms like this:
import random
from klefki.utils import to_sha256int
from klefki.types.algebra.concrete import (
JacobianGroupSecp256k1 as JG,
EllipticCurveCyclicSubgroupSecp256k1 as CG,
EllipticCurveGroupSecp256k1 as ECG,
FiniteFieldCyclicSecp256k1 as CF
)
N = CG.N
G = CG.G
def random_privkey() -> CF:
return CF(random.randint(1, N))
def pubkey(priv: CF) -> ECG:
return ECG(JG(G @ priv))
def sign(priv: CF, m: str) -> tuple:
k = CF(random.randint(1, N))
z = CF(to_sha256int(m))
r = CF((G @ k).value[0]) # From Secp256k1Field to CyclicSecp256k1Field
s = z / k + priv * r / k
return r, s
def verify(pub: ECG, sig: tuple, mhash: int):
r, s = sig
z = CF(mhash)
u1 = z / s
u2 = r / s
rp = G @ u1 + pub @ u2
return r == rp.value[0]
Even proof the Sign/Verify
algorithm mathematically.
def proof():
priv = random_privkey()
m = 'test'
k = CF(random_privkey())
z = CF(to_sha256int(m))
r = CF((G @ k).value[0])
s = z / k + priv * r / k
assert k == z / s + priv * r / s
assert G @ k == G @ (z / s + priv * r / s)
assert G @ k == G @ (z / s) + G @ priv @ (r / s)
pub = G @ priv
assert pub == pubkey(priv)
assert G @ k == G @ (z / s) + pub @ (r / s)
u1 = z / s
u2 = r / s
assert G @ k == G @ u1 + pub @ u2
Or transform your Bitcoin Private Key to EOS Private/Pub key (or back)
from klefki.bitcoin.private import decode_privkey
from klefki.eos.public import gen_pub_key
from klefki.eos.private import encode_privkey
def test_to_eos(priv):
key = decode_privkey(priv)
eos_priv = encode_privkey(key)
eos_pub = gen_pub_key(key)
print(eos_priv, eos_pub)
Bijection¶
A morphism f : X → Y in a category is an isomorphism if it admits a two-sided inverse.
You can define your bijection encoder/decoder like this.
from klefki.types.algebra.isomorphism import bijection, do
from klefki.asn import signature as sig
from functools import partial
import base58
from pyasn1.codec.der.encoder import encode
from pyasn1.codec.der.decoder import decode
b58encoder = bijection(base58.b58decode)(base58.b58encode)
asn1encoder = bijection(partial(decode, asn1Spec=sig.ECDSA_Sig_Value()))(encode)
data = sig.ECDSA_Sig_Value()
data['r'] = 123
data['s'] = 234
process = do(asn1encoder, b58encoder)
process(data)
>>> 'cTVygpHoWBNR'
(~process)(process(data))
>>> (ECDSA_Sig_Value().setComponentByPosition(0, Integer(123)).setComponentByPosition(1, Integer(234)),
b'')