klefki.algebra.fields.polyfield
¶
Module Contents¶
Classes¶
$U subseteq F$, where F is subfield, P is its module cof |
-
class
klefki.algebra.fields.polyfield.
PolyExtField
(*args)¶ Bases:
klefki.algebra.abstract.Field
,klefki.algebra.rings.PolyRing
$U subseteq F$, where F is subfield, P is its module cof
-
F
¶
-
P
¶
-
DEG
¶
-
from_int
(self, o)¶
-
from_list
(self, o)¶
-
from_tuple
(self, o)¶
-
from_PolyRing
(self, o)¶
-
classmethod
sec_identity
(cls)¶
-
classmethod
identity
(cls)¶ The value for obeying axiom identity (3)
-
sec_inverse
(self)¶ Implement for axiom inverse
-
sec_op
(self, rhs)¶ The Operator for obeying axiom associativity (2)
-